Fast and precise independent component analysis for high field fMRI time series tailored using prior information on spatiotemporal structure.

نویسندگان

  • Kiyotaka Suzuki
  • Tohru Kiryu
  • Tsutomu Nakada
چکیده

Independent component analysis (ICA) has been shown as a promising tool for the analysis of functional magnetic resonance imaging (fMRI) time series. Each of these studies, however, used a general-purpose algorithm for performing ICA and the computational efficiency and accuracy of elicited neuronal activations have not been discussed in much detail. We have previously proposed a direct search method for improving computational efficiency. The method, which is based on independent component-cross correlation-sequential epoch (ICS) analysis, utilizes a form of the fixed-point ICA algorithm and considerably reduces the time required for extracting desired components. At the same time, it is shown that the accuracy of detecting physiologically meaningful components is much improved by tailoring the contrast function used in the algorithm. In this study, further improvement was made to this direct search method by integrating an optimal contrast function. Functional resolution of activation maps could be controlled with a suitable selection of the contrast function derived from prior knowledge of the spatial patterns of physiologically desired components. A simple skewness-weighted contrast function was verified to extract sufficiently precise activation maps from the fMRI time series acquired using a 3.0 Tesla MRI system.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improving the Performance of ICA Algorithm for fMRI Simulated Data Analysis Using Temporal and Spatial Filters in the Preprocessing Phase

Introduction: The accuracy of analyzing Functional MRI (fMRI) data is usually decreases in the presence of noise and artifact sources. A common solution in for analyzing fMRI data having high noise is to use suitable preprocessing methods with the aim of data denoising. Some effects of preprocessing methods on the parametric methods such as general linear model (GLM) have previously been evalua...

متن کامل

Feature selection using genetic algorithm for classification of schizophrenia using fMRI data

In this paper we propose a new method for classification of subjects into schizophrenia and control groups using functional magnetic resonance imaging (fMRI) data. In the preprocessing step, the number of fMRI time points is reduced using principal component analysis (PCA). Then, independent component analysis (ICA) is used for further data analysis. It estimates independent components (ICs) of...

متن کامل

Real-time independent component analysis of fMRI time-series.

Real-time functional magnetic resonance imaging (fMRI) enables one to monitor a subject's brain activity during an ongoing session. The availability of online information about brain activity is essential for developing and refining interactive fMRI paradigms in research and clinical trials and for neurofeedback applications. Data analysis for real-time fMRI has traditionally been based on hypo...

متن کامل

Analysis of Resting-State fMRI Topological Graph Theory Properties in Methamphetamine Drug Users Applying Box-Counting Fractal Dimension

Introduction: Graph theoretical analysis of functional Magnetic Resonance Imaging (fMRI) data has provided new measures of mapping human brain in vivo. Of all methods to measure the functional connectivity between regions, Linear Correlation (LC) calculation of activity time series of the brain regions as a linear measure is considered the most ubiquitous one. The strength of the dependence obl...

متن کامل

Recurrent Neural Networks for Spatiotemporal Dynamics of Intrinsic Networks from fMRI Data

Functional magnetic resonance imaging (fMRI) of temporally-coherent blood oxygenization leveldependent (BOLD) signal provides an effective means of analyzing functionally coherent patterns in the brain [6, 5, 13]. Intrinsic networks [INs, 3] and functional connectivity are important outcomes of fMRI studies and are central to understanding brain function and making diagnoses [4, 1, 10]. The mos...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Human brain mapping

دوره 15 1  شماره 

صفحات  -

تاریخ انتشار 2002